MakeItFrom.com
Menu (ESC)

EN 1.4415 Stainless Steel vs. K93050 Alloy

Both EN 1.4415 stainless steel and K93050 alloy are iron alloys. They have 69% of their average alloy composition in common. There are 19 material properties with values for both materials. Properties with values for just one material (14, in this case) are not shown.

For each property being compared, the top bar is EN 1.4415 stainless steel and the bottom bar is K93050 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 77
72
Tensile Strength: Ultimate (UTS), MPa 830 to 930
500 to 680

Thermal Properties

Latent Heat of Fusion, J/g 280
270
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
460
Thermal Expansion, µm/m-K 9.9
12

Otherwise Unclassified Properties

Base Metal Price, % relative 13
26
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 3.6
4.7
Embodied Energy, MJ/kg 51
65
Embodied Water, L/kg 120
120

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 29 to 33
17 to 23
Strength to Weight: Bending, points 25 to 27
17 to 21
Thermal Shock Resistance, points 30 to 34
16 to 21

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.15
Chromium (Cr), % 11.5 to 13.5
0 to 0.25
Cobalt (Co), % 0
0 to 0.5
Iron (Fe), % 75.9 to 82.4
61.4 to 63.9
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 1.5 to 2.5
0
Nickel (Ni), % 4.5 to 6.5
36
Phosphorus (P), % 0 to 0.040
0 to 0.020
Selenium (Se), % 0
0.15 to 0.3
Silicon (Si), % 0 to 0.5
0 to 0.35
Sulfur (S), % 0 to 0.015
0 to 0.020
Titanium (Ti), % 0 to 0.010
0
Vanadium (V), % 0.1 to 0.5
0

Comparable Variants