MakeItFrom.com
Menu (ESC)

EN 1.4416 Stainless Steel vs. 5154 Aluminum

EN 1.4416 stainless steel belongs to the iron alloys classification, while 5154 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4416 stainless steel and the bottom bar is 5154 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 34
3.4 to 20
Fatigue Strength, MPa 170
100 to 160
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
26
Tensile Strength: Ultimate (UTS), MPa 500
240 to 360
Tensile Strength: Yield (Proof), MPa 210
94 to 270

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1100
190
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1400
590
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 12
130
Thermal Expansion, µm/m-K 15
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
32
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
110

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 8.1
2.7
Embodied Carbon, kg CO2/kg material 5.8
8.8
Embodied Energy, MJ/kg 79
150
Embodied Water, L/kg 190
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
11 to 39
Resilience: Unit (Modulus of Resilience), kJ/m3 110
64 to 540
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 17
25 to 37
Strength to Weight: Bending, points 17
32 to 42
Thermal Diffusivity, mm2/s 3.2
52
Thermal Shock Resistance, points 12
10 to 16

Alloy Composition

Aluminum (Al), % 0
94.4 to 96.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 21
0.15 to 0.35
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 45.2 to 52.4
0 to 0.4
Magnesium (Mg), % 0
3.1 to 3.9
Manganese (Mn), % 0 to 1.0
0 to 0.1
Molybdenum (Mo), % 4.5 to 5.5
0
Nickel (Ni), % 24 to 26
0
Nitrogen (N), % 0.12 to 0.2
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0 to 0.25
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15