MakeItFrom.com
Menu (ESC)

EN 1.4417 Stainless Steel vs. AISI 316Cb Stainless Steel

Both EN 1.4417 stainless steel and AISI 316Cb stainless steel are iron alloys. They have 90% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4417 stainless steel and the bottom bar is AISI 316Cb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 25
34
Fatigue Strength, MPa 380
180
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 81
78
Tensile Strength: Ultimate (UTS), MPa 730
580
Tensile Strength: Yield (Proof), MPa 550
230

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 450
490
Maximum Temperature: Mechanical, °C 1100
940
Melting Completion (Liquidus), °C 1450
1450
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 17
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 21
22
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 4.1
4.4
Embodied Energy, MJ/kg 57
61
Embodied Water, L/kg 180
150

Common Calculations

PREN (Pitting Resistance) 41
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
160
Resilience: Unit (Modulus of Resilience), kJ/m3 730
130
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 26
20
Strength to Weight: Bending, points 23
20
Thermal Diffusivity, mm2/s 4.6
4.1
Thermal Shock Resistance, points 20
13

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 24 to 26
16 to 18
Copper (Cu), % 0 to 1.0
0
Iron (Fe), % 56.7 to 66.9
60.9 to 72
Manganese (Mn), % 0 to 1.5
0 to 2.0
Molybdenum (Mo), % 3.0 to 4.0
2.0 to 3.0
Nickel (Ni), % 6.0 to 8.5
10 to 14
Niobium (Nb), % 0
0 to 1.1
Nitrogen (N), % 0.15 to 0.25
0 to 0.1
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.020
0 to 0.030
Tungsten (W), % 0 to 1.0
0