MakeItFrom.com
Menu (ESC)

EN 1.4418 Stainless Steel vs. ASTM A182 Grade F22V

Both EN 1.4418 stainless steel and ASTM A182 grade F22V are iron alloys. They have 81% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4418 stainless steel and the bottom bar is ASTM A182 grade F22V.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 16 to 20
21
Fatigue Strength, MPa 350 to 480
320
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
74
Shear Strength, MPa 530 to 620
420
Tensile Strength: Ultimate (UTS), MPa 860 to 1000
670
Tensile Strength: Yield (Proof), MPa 540 to 790
460

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 870
460
Melting Completion (Liquidus), °C 1450
1470
Melting Onset (Solidus), °C 1400
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
39
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 13
4.2
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.8
2.5
Embodied Energy, MJ/kg 39
35
Embodied Water, L/kg 130
61

Common Calculations

PREN (Pitting Resistance) 20
5.6
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 170
120
Resilience: Unit (Modulus of Resilience), kJ/m3 730 to 1590
570
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 31 to 36
24
Strength to Weight: Bending, points 26 to 28
22
Thermal Diffusivity, mm2/s 4.0
11
Thermal Shock Resistance, points 31 to 36
19

Alloy Composition

Boron (B), % 0
0 to 0.0020
Calcium (Ca), % 0
0 to 0.015
Carbon (C), % 0 to 0.060
0.11 to 0.15
Chromium (Cr), % 15 to 17
2.0 to 2.5
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 73.2 to 80.2
94.6 to 96.4
Manganese (Mn), % 0 to 1.5
0.3 to 0.6
Molybdenum (Mo), % 0.8 to 1.5
0.9 to 1.1
Nickel (Ni), % 4.0 to 6.0
0 to 0.25
Niobium (Nb), % 0
0 to 0.070
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.040
0 to 0.015
Silicon (Si), % 0 to 0.7
0 to 0.1
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0.25 to 0.35