MakeItFrom.com
Menu (ESC)

EN 1.4418 Stainless Steel vs. EN 1.4542 Stainless Steel

Both EN 1.4418 stainless steel and EN 1.4542 stainless steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4418 stainless steel and the bottom bar is EN 1.4542 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 16 to 20
5.7 to 20
Fatigue Strength, MPa 350 to 480
370 to 640
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Shear Strength, MPa 530 to 620
550 to 860
Tensile Strength: Ultimate (UTS), MPa 860 to 1000
880 to 1470
Tensile Strength: Yield (Proof), MPa 540 to 790
580 to 1300

Thermal Properties

Latent Heat of Fusion, J/g 280
280
Maximum Temperature: Corrosion, °C 410
440
Maximum Temperature: Mechanical, °C 870
860
Melting Completion (Liquidus), °C 1450
1430
Melting Onset (Solidus), °C 1400
1380
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
16
Thermal Expansion, µm/m-K 10
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 13
13
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 39
39
Embodied Water, L/kg 130
130

Common Calculations

PREN (Pitting Resistance) 20
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 170
62 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 730 to 1590
880 to 4360
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 31 to 36
31 to 52
Strength to Weight: Bending, points 26 to 28
26 to 37
Thermal Diffusivity, mm2/s 4.0
4.3
Thermal Shock Resistance, points 31 to 36
29 to 49

Alloy Composition

Carbon (C), % 0 to 0.060
0 to 0.070
Chromium (Cr), % 15 to 17
15 to 17
Copper (Cu), % 0
3.0 to 5.0
Iron (Fe), % 73.2 to 80.2
69.6 to 79
Manganese (Mn), % 0 to 1.5
0 to 1.5
Molybdenum (Mo), % 0.8 to 1.5
0 to 0.6
Nickel (Ni), % 4.0 to 6.0
3.0 to 5.0
Niobium (Nb), % 0
0 to 0.45
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.7
0 to 0.7
Sulfur (S), % 0 to 0.015
0 to 0.015