MakeItFrom.com
Menu (ESC)

EN 1.4418 Stainless Steel vs. Grade 14 Titanium

EN 1.4418 stainless steel belongs to the iron alloys classification, while grade 14 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4418 stainless steel and the bottom bar is grade 14 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 16 to 20
23
Fatigue Strength, MPa 350 to 480
220
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
41
Shear Strength, MPa 530 to 620
290
Tensile Strength: Ultimate (UTS), MPa 860 to 1000
460
Tensile Strength: Yield (Proof), MPa 540 to 790
310

Thermal Properties

Latent Heat of Fusion, J/g 280
420
Maximum Temperature: Mechanical, °C 870
320
Melting Completion (Liquidus), °C 1450
1660
Melting Onset (Solidus), °C 1400
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 15
21
Thermal Expansion, µm/m-K 10
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
6.9

Otherwise Unclassified Properties

Base Metal Price, % relative 13
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 2.8
32
Embodied Energy, MJ/kg 39
520
Embodied Water, L/kg 130
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 170
93
Resilience: Unit (Modulus of Resilience), kJ/m3 730 to 1590
450
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 31 to 36
28
Strength to Weight: Bending, points 26 to 28
29
Thermal Diffusivity, mm2/s 4.0
8.5
Thermal Shock Resistance, points 31 to 36
35

Alloy Composition

Carbon (C), % 0 to 0.060
0 to 0.080
Chromium (Cr), % 15 to 17
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 73.2 to 80.2
0 to 0.3
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0.8 to 1.5
0
Nickel (Ni), % 4.0 to 6.0
0.4 to 0.6
Nitrogen (N), % 0 to 0.020
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.040
0
Ruthenium (Ru), % 0
0.040 to 0.060
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
98.4 to 99.56
Residuals, % 0
0 to 0.4