MakeItFrom.com
Menu (ESC)

EN 1.4418 Stainless Steel vs. C23000 Brass

EN 1.4418 stainless steel belongs to the iron alloys classification, while C23000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4418 stainless steel and the bottom bar is C23000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 16 to 20
2.9 to 47
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
42
Shear Strength, MPa 530 to 620
220 to 340
Tensile Strength: Ultimate (UTS), MPa 860 to 1000
280 to 590
Tensile Strength: Yield (Proof), MPa 540 to 790
83 to 480

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 870
170
Melting Completion (Liquidus), °C 1450
1030
Melting Onset (Solidus), °C 1400
990
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
160
Thermal Expansion, µm/m-K 10
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
37
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
39

Otherwise Unclassified Properties

Base Metal Price, % relative 13
28
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 39
43
Embodied Water, L/kg 130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 170
6.2 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 730 to 1590
31 to 1040
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 31 to 36
8.9 to 19
Strength to Weight: Bending, points 26 to 28
11 to 18
Thermal Diffusivity, mm2/s 4.0
48
Thermal Shock Resistance, points 31 to 36
9.4 to 20

Alloy Composition

Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 0
84 to 86
Iron (Fe), % 73.2 to 80.2
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0.8 to 1.5
0
Nickel (Ni), % 4.0 to 6.0
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
13.7 to 16
Residuals, % 0
0 to 0.2