MakeItFrom.com
Menu (ESC)

EN 1.4418 Stainless Steel vs. C64210 Bronze

EN 1.4418 stainless steel belongs to the iron alloys classification, while C64210 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4418 stainless steel and the bottom bar is C64210 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 16 to 20
35
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
42
Shear Strength, MPa 530 to 620
380
Tensile Strength: Ultimate (UTS), MPa 860 to 1000
570
Tensile Strength: Yield (Proof), MPa 540 to 790
290

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 870
210
Melting Completion (Liquidus), °C 1450
1040
Melting Onset (Solidus), °C 1400
990
Specific Heat Capacity, J/kg-K 480
430
Thermal Conductivity, W/m-K 15
48
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
13
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
14

Otherwise Unclassified Properties

Base Metal Price, % relative 13
29
Density, g/cm3 7.8
8.4
Embodied Carbon, kg CO2/kg material 2.8
3.0
Embodied Energy, MJ/kg 39
49
Embodied Water, L/kg 130
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 170
170
Resilience: Unit (Modulus of Resilience), kJ/m3 730 to 1590
360
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 31 to 36
19
Strength to Weight: Bending, points 26 to 28
18
Thermal Diffusivity, mm2/s 4.0
13
Thermal Shock Resistance, points 31 to 36
21

Alloy Composition

Aluminum (Al), % 0
6.3 to 7.0
Arsenic (As), % 0
0 to 0.15
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 0
89 to 92.2
Iron (Fe), % 73.2 to 80.2
0 to 0.3
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0 to 0.1
Molybdenum (Mo), % 0.8 to 1.5
0
Nickel (Ni), % 4.0 to 6.0
0 to 0.25
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
1.5 to 2.0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5