MakeItFrom.com
Menu (ESC)

EN 1.4419 Stainless Steel vs. EN-MC65120 Magnesium

EN 1.4419 stainless steel belongs to the iron alloys classification, while EN-MC65120 magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4419 stainless steel and the bottom bar is EN-MC65120 magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
45
Elongation at Break, % 11 to 17
3.1
Fatigue Strength, MPa 230 to 680
80
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
17
Shear Strength, MPa 410 to 950
92
Tensile Strength: Ultimate (UTS), MPa 660 to 1590
160
Tensile Strength: Yield (Proof), MPa 370 to 1240
110

Thermal Properties

Latent Heat of Fusion, J/g 280
330
Maximum Temperature: Mechanical, °C 790
180
Melting Completion (Liquidus), °C 1440
590
Melting Onset (Solidus), °C 1400
520
Specific Heat Capacity, J/kg-K 480
970
Thermal Conductivity, W/m-K 30
100
Thermal Expansion, µm/m-K 11
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
25
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
120

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
25
Density, g/cm3 7.7
1.9
Embodied Carbon, kg CO2/kg material 2.2
25
Embodied Energy, MJ/kg 30
190
Embodied Water, L/kg 110
930

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 170
4.4
Resilience: Unit (Modulus of Resilience), kJ/m3 350 to 3920
140
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
62
Strength to Weight: Axial, points 24 to 57
23
Strength to Weight: Bending, points 22 to 39
34
Thermal Diffusivity, mm2/s 8.1
56
Thermal Shock Resistance, points 23 to 55
9.8

Alloy Composition

Carbon (C), % 0.36 to 0.42
0
Chromium (Cr), % 13 to 14.5
0
Copper (Cu), % 0
0 to 0.030
Iron (Fe), % 82 to 86
0 to 0.010
Magnesium (Mg), % 0
91.8 to 95.1
Manganese (Mn), % 0 to 1.0
0 to 0.15
Molybdenum (Mo), % 0.6 to 1.0
0
Nickel (Ni), % 0
0 to 0.0050
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.010
Sulfur (S), % 0 to 0.015
0
Unspecified Rare Earths, % 0
2.5 to 4.0
Zinc (Zn), % 0
2.0 to 3.0
Zirconium (Zr), % 0
0.4 to 1.0
Residuals, % 0
0 to 0.010