MakeItFrom.com
Menu (ESC)

EN 1.4419 Stainless Steel vs. C17510 Copper

EN 1.4419 stainless steel belongs to the iron alloys classification, while C17510 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4419 stainless steel and the bottom bar is C17510 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 11 to 17
5.4 to 37
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
44
Shear Strength, MPa 410 to 950
210 to 500
Tensile Strength: Ultimate (UTS), MPa 660 to 1590
310 to 860
Tensile Strength: Yield (Proof), MPa 370 to 1240
120 to 750

Thermal Properties

Latent Heat of Fusion, J/g 280
220
Maximum Temperature: Mechanical, °C 790
220
Melting Completion (Liquidus), °C 1440
1070
Melting Onset (Solidus), °C 1400
1030
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 30
210
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
22 to 54
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
23 to 54

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
49
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.2
4.2
Embodied Energy, MJ/kg 30
65
Embodied Water, L/kg 110
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 170
39 to 92
Resilience: Unit (Modulus of Resilience), kJ/m3 350 to 3920
64 to 2410
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 24 to 57
9.7 to 27
Strength to Weight: Bending, points 22 to 39
11 to 23
Thermal Diffusivity, mm2/s 8.1
60
Thermal Shock Resistance, points 23 to 55
11 to 30

Alloy Composition

Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
0.2 to 0.6
Carbon (C), % 0.36 to 0.42
0
Chromium (Cr), % 13 to 14.5
0
Cobalt (Co), % 0
0 to 0.3
Copper (Cu), % 0
95.9 to 98.4
Iron (Fe), % 82 to 86
0 to 0.1
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.6 to 1.0
0
Nickel (Ni), % 0
1.4 to 2.2
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.015
0
Residuals, % 0
0 to 0.5