MakeItFrom.com
Menu (ESC)

EN 1.4419 Stainless Steel vs. C68400 Brass

EN 1.4419 stainless steel belongs to the iron alloys classification, while C68400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4419 stainless steel and the bottom bar is C68400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 11 to 17
18
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
41
Shear Strength, MPa 410 to 950
330
Tensile Strength: Ultimate (UTS), MPa 660 to 1590
540
Tensile Strength: Yield (Proof), MPa 370 to 1240
310

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 790
130
Melting Completion (Liquidus), °C 1440
840
Melting Onset (Solidus), °C 1400
820
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 30
66
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
87
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
99

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
23
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.2
2.7
Embodied Energy, MJ/kg 30
47
Embodied Water, L/kg 110
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 170
81
Resilience: Unit (Modulus of Resilience), kJ/m3 350 to 3920
460
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 24 to 57
19
Strength to Weight: Bending, points 22 to 39
19
Thermal Diffusivity, mm2/s 8.1
21
Thermal Shock Resistance, points 23 to 55
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Boron (B), % 0
0.0010 to 0.030
Carbon (C), % 0.36 to 0.42
0
Chromium (Cr), % 13 to 14.5
0
Copper (Cu), % 0
59 to 64
Iron (Fe), % 82 to 86
0 to 1.0
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 1.0
0.2 to 1.5
Molybdenum (Mo), % 0.6 to 1.0
0
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.040
0.030 to 0.3
Silicon (Si), % 0 to 1.0
1.5 to 2.5
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.5
Zinc (Zn), % 0
28.6 to 39.3
Residuals, % 0
0 to 0.5