MakeItFrom.com
Menu (ESC)

EN 1.4421 Stainless Steel vs. 710.0 Aluminum

EN 1.4421 stainless steel belongs to the iron alloys classification, while 710.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4421 stainless steel and the bottom bar is 710.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 11 to 17
2.2 to 3.6
Fatigue Strength, MPa 380 to 520
55 to 110
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 880 to 1100
240 to 250
Tensile Strength: Yield (Proof), MPa 620 to 950
160

Thermal Properties

Latent Heat of Fusion, J/g 280
380
Maximum Temperature: Mechanical, °C 870
170
Melting Completion (Liquidus), °C 1440
650
Melting Onset (Solidus), °C 1400
610
Specific Heat Capacity, J/kg-K 480
870
Thermal Conductivity, W/m-K 16
140
Thermal Expansion, µm/m-K 10
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
35
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
110

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 2.6
8.0
Embodied Energy, MJ/kg 36
150
Embodied Water, L/kg 130
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 140
4.9 to 7.9
Resilience: Unit (Modulus of Resilience), kJ/m3 960 to 2270
180 to 190
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 31 to 39
23
Strength to Weight: Bending, points 26 to 30
29
Thermal Diffusivity, mm2/s 4.4
53
Thermal Shock Resistance, points 31 to 39
10 to 11

Alloy Composition

Aluminum (Al), % 0
90.5 to 93.1
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 15.5 to 17.5
0
Copper (Cu), % 0
0.35 to 0.65
Iron (Fe), % 74.4 to 80.5
0 to 0.5
Magnesium (Mg), % 0
0.6 to 0.8
Manganese (Mn), % 0 to 1.0
0 to 0.050
Molybdenum (Mo), % 0 to 0.7
0
Nickel (Ni), % 4.0 to 5.5
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.8
0 to 0.15
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
6.0 to 7.0
Residuals, % 0
0 to 0.15

Comparable Variants