MakeItFrom.com
Menu (ESC)

EN 1.4421 Stainless Steel vs. EN 1.6368 Steel

Both EN 1.4421 stainless steel and EN 1.6368 steel are iron alloys. They have 80% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4421 stainless steel and the bottom bar is EN 1.6368 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 11 to 17
18
Fatigue Strength, MPa 380 to 520
310 to 330
Impact Strength: V-Notched Charpy, J 30 to 67
43 to 46
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Tensile Strength: Ultimate (UTS), MPa 880 to 1100
660 to 690
Tensile Strength: Yield (Proof), MPa 620 to 950
460 to 490

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 870
410
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
40
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 12
3.4
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.6
1.7
Embodied Energy, MJ/kg 36
22
Embodied Water, L/kg 130
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 140
110
Resilience: Unit (Modulus of Resilience), kJ/m3 960 to 2270
580 to 650
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 31 to 39
23 to 24
Strength to Weight: Bending, points 26 to 30
21 to 22
Thermal Diffusivity, mm2/s 4.4
11
Thermal Shock Resistance, points 31 to 39
20

Alloy Composition

Aluminum (Al), % 0
0.015 to 0.040
Carbon (C), % 0 to 0.060
0 to 0.17
Chromium (Cr), % 15.5 to 17.5
0 to 0.3
Copper (Cu), % 0
0.5 to 0.8
Iron (Fe), % 74.4 to 80.5
95.1 to 97.2
Manganese (Mn), % 0 to 1.0
0.8 to 1.2
Molybdenum (Mo), % 0 to 0.7
0.25 to 0.5
Nickel (Ni), % 4.0 to 5.5
1.0 to 1.3
Niobium (Nb), % 0
0.015 to 0.045
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.035
0 to 0.025
Silicon (Si), % 0 to 0.8
0.25 to 0.5
Sulfur (S), % 0 to 0.020
0 to 0.010