MakeItFrom.com
Menu (ESC)

EN 1.4421 Stainless Steel vs. EN 1.8967 Steel

Both EN 1.4421 stainless steel and EN 1.8967 steel are iron alloys. They have 79% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4421 stainless steel and the bottom bar is EN 1.8967 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 11 to 17
16
Fatigue Strength, MPa 380 to 520
220
Impact Strength: V-Notched Charpy, J 30 to 67
30
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Tensile Strength: Ultimate (UTS), MPa 880 to 1100
570
Tensile Strength: Yield (Proof), MPa 620 to 950
340

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 870
420
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
39
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 12
3.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.8
Embodied Energy, MJ/kg 36
25
Embodied Water, L/kg 130
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 140
78
Resilience: Unit (Modulus of Resilience), kJ/m3 960 to 2270
300
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 31 to 39
20
Strength to Weight: Bending, points 26 to 30
19
Thermal Diffusivity, mm2/s 4.4
10
Thermal Shock Resistance, points 31 to 39
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.030
Carbon (C), % 0 to 0.060
0 to 0.19
Chromium (Cr), % 15.5 to 17.5
0.35 to 0.85
Copper (Cu), % 0
0.2 to 0.6
Iron (Fe), % 74.4 to 80.5
94.6 to 99
Manganese (Mn), % 0 to 1.0
0.45 to 1.6
Molybdenum (Mo), % 0 to 0.7
0 to 0.35
Nickel (Ni), % 4.0 to 5.5
0 to 0.7
Niobium (Nb), % 0
0 to 0.065
Phosphorus (P), % 0 to 0.035
0 to 0.035
Silicon (Si), % 0 to 0.8
0 to 0.55
Sulfur (S), % 0 to 0.020
0 to 0.035
Titanium (Ti), % 0
0 to 0.12
Vanadium (V), % 0
0 to 0.14
Zirconium (Zr), % 0
0 to 0.17