MakeItFrom.com
Menu (ESC)

EN 1.4421 Stainless Steel vs. Grade Ti-Pd17 Titanium

EN 1.4421 stainless steel belongs to the iron alloys classification, while grade Ti-Pd17 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4421 stainless steel and the bottom bar is grade Ti-Pd17 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 11 to 17
22
Fatigue Strength, MPa 380 to 520
140
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 880 to 1100
270
Tensile Strength: Yield (Proof), MPa 620 to 950
190

Thermal Properties

Latent Heat of Fusion, J/g 280
420
Maximum Temperature: Mechanical, °C 870
320
Melting Completion (Liquidus), °C 1440
1660
Melting Onset (Solidus), °C 1400
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 16
21
Thermal Expansion, µm/m-K 10
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
7.1

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 2.6
36
Embodied Energy, MJ/kg 36
600
Embodied Water, L/kg 130
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 140
55
Resilience: Unit (Modulus of Resilience), kJ/m3 960 to 2270
180
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 31 to 39
17
Strength to Weight: Bending, points 26 to 30
21
Thermal Diffusivity, mm2/s 4.4
8.8
Thermal Shock Resistance, points 31 to 39
21

Alloy Composition

Carbon (C), % 0 to 0.060
0 to 0.1
Chromium (Cr), % 15.5 to 17.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 74.4 to 80.5
0 to 0.2
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.7
0
Nickel (Ni), % 4.0 to 5.5
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.8
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
98.9 to 99.96
Residuals, % 0
0 to 0.4