MakeItFrom.com
Menu (ESC)

EN 1.4421 Stainless Steel vs. Titanium 6-6-2

EN 1.4421 stainless steel belongs to the iron alloys classification, while titanium 6-6-2 belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4421 stainless steel and the bottom bar is titanium 6-6-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 11 to 17
6.7 to 9.0
Fatigue Strength, MPa 380 to 520
590 to 670
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
44
Tensile Strength: Ultimate (UTS), MPa 880 to 1100
1140 to 1370
Tensile Strength: Yield (Proof), MPa 620 to 950
1040 to 1230

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Maximum Temperature: Mechanical, °C 870
310
Melting Completion (Liquidus), °C 1440
1610
Melting Onset (Solidus), °C 1400
1560
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 16
5.5
Thermal Expansion, µm/m-K 10
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 12
40
Density, g/cm3 7.8
4.8
Embodied Carbon, kg CO2/kg material 2.6
29
Embodied Energy, MJ/kg 36
470
Embodied Water, L/kg 130
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 140
89 to 99
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
34
Strength to Weight: Axial, points 31 to 39
66 to 79
Strength to Weight: Bending, points 26 to 30
50 to 57
Thermal Diffusivity, mm2/s 4.4
2.1
Thermal Shock Resistance, points 31 to 39
75 to 90

Alloy Composition

Aluminum (Al), % 0
5.0 to 6.0
Carbon (C), % 0 to 0.060
0 to 0.050
Chromium (Cr), % 15.5 to 17.5
0
Copper (Cu), % 0
0.35 to 1.0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 74.4 to 80.5
0.35 to 1.0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.7
5.0 to 6.0
Nickel (Ni), % 4.0 to 5.5
0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.8
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
1.5 to 2.5
Titanium (Ti), % 0
82.8 to 87.8
Residuals, % 0
0 to 0.4

Comparable Variants