MakeItFrom.com
Menu (ESC)

EN 1.4421 Stainless Steel vs. R30556 Alloy

Both EN 1.4421 stainless steel and R30556 alloy are iron alloys. They have 52% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4421 stainless steel and the bottom bar is R30556 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 11 to 17
45
Fatigue Strength, MPa 380 to 520
320
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
81
Tensile Strength: Ultimate (UTS), MPa 880 to 1100
780
Tensile Strength: Yield (Proof), MPa 620 to 950
350

Thermal Properties

Latent Heat of Fusion, J/g 280
300
Maximum Temperature: Corrosion, °C 410
450
Maximum Temperature: Mechanical, °C 870
1100
Melting Completion (Liquidus), °C 1440
1420
Melting Onset (Solidus), °C 1400
1330
Specific Heat Capacity, J/kg-K 480
450
Thermal Conductivity, W/m-K 16
11
Thermal Expansion, µm/m-K 10
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 12
70
Density, g/cm3 7.8
8.4
Embodied Carbon, kg CO2/kg material 2.6
8.7
Embodied Energy, MJ/kg 36
130
Embodied Water, L/kg 130
300

Common Calculations

PREN (Pitting Resistance) 18
40
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 140
290
Resilience: Unit (Modulus of Resilience), kJ/m3 960 to 2270
290
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 31 to 39
26
Strength to Weight: Bending, points 26 to 30
22
Thermal Diffusivity, mm2/s 4.4
2.9
Thermal Shock Resistance, points 31 to 39
18

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.5
Boron (B), % 0
0 to 0.020
Carbon (C), % 0 to 0.060
0.050 to 0.15
Chromium (Cr), % 15.5 to 17.5
21 to 23
Cobalt (Co), % 0
16 to 21
Iron (Fe), % 74.4 to 80.5
20.4 to 38.2
Lanthanum (La), % 0
0.0050 to 0.1
Manganese (Mn), % 0 to 1.0
0.5 to 2.0
Molybdenum (Mo), % 0 to 0.7
2.5 to 4.0
Nickel (Ni), % 4.0 to 5.5
19 to 22.5
Niobium (Nb), % 0
0 to 0.3
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 0.8
0.2 to 0.8
Sulfur (S), % 0 to 0.020
0 to 0.015
Tantalum (Ta), % 0
0.3 to 1.3
Tungsten (W), % 0
2.0 to 3.5
Zinc (Zn), % 0
0.0010 to 0.1