MakeItFrom.com
Menu (ESC)

EN 1.4421 Stainless Steel vs. ZC63A Magnesium

EN 1.4421 stainless steel belongs to the iron alloys classification, while ZC63A magnesium belongs to the magnesium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4421 stainless steel and the bottom bar is ZC63A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
48
Elongation at Break, % 11 to 17
3.3
Fatigue Strength, MPa 380 to 520
94
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
19
Tensile Strength: Ultimate (UTS), MPa 880 to 1100
220
Tensile Strength: Yield (Proof), MPa 620 to 950
130

Thermal Properties

Latent Heat of Fusion, J/g 280
330
Maximum Temperature: Mechanical, °C 870
98
Melting Completion (Liquidus), °C 1440
550
Melting Onset (Solidus), °C 1400
470
Specific Heat Capacity, J/kg-K 480
950
Thermal Conductivity, W/m-K 16
120
Thermal Expansion, µm/m-K 10
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
32
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
140

Otherwise Unclassified Properties

Base Metal Price, % relative 12
13
Density, g/cm3 7.8
2.1
Embodied Carbon, kg CO2/kg material 2.6
22
Embodied Energy, MJ/kg 36
150
Embodied Water, L/kg 130
920

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 140
6.3
Resilience: Unit (Modulus of Resilience), kJ/m3 960 to 2270
190
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
58
Strength to Weight: Axial, points 31 to 39
29
Strength to Weight: Bending, points 26 to 30
38
Thermal Diffusivity, mm2/s 4.4
58
Thermal Shock Resistance, points 31 to 39
12

Alloy Composition

Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 15.5 to 17.5
0
Copper (Cu), % 0
2.4 to 3.0
Iron (Fe), % 74.4 to 80.5
0
Magnesium (Mg), % 0
89.2 to 91.9
Manganese (Mn), % 0 to 1.0
0.25 to 0.75
Molybdenum (Mo), % 0 to 0.7
0
Nickel (Ni), % 4.0 to 5.5
0 to 0.010
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.8
0 to 0.2
Sulfur (S), % 0 to 0.020
0
Zinc (Zn), % 0
5.5 to 6.5
Residuals, % 0
0 to 0.3