MakeItFrom.com
Menu (ESC)

EN 1.4423 Stainless Steel vs. 1200 Aluminum

EN 1.4423 stainless steel belongs to the iron alloys classification, while 1200 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4423 stainless steel and the bottom bar is 1200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 17
1.1 to 28
Fatigue Strength, MPa 380
25 to 69
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 520
54 to 100
Tensile Strength: Ultimate (UTS), MPa 850
85 to 180
Tensile Strength: Yield (Proof), MPa 630
28 to 160

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Maximum Temperature: Mechanical, °C 780
170
Melting Completion (Liquidus), °C 1460
660
Melting Onset (Solidus), °C 1420
650
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 16
230
Thermal Expansion, µm/m-K 9.9
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
58
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
190

Otherwise Unclassified Properties

Base Metal Price, % relative 14
9.0
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 3.2
8.2
Embodied Energy, MJ/kg 43
150
Embodied Water, L/kg 120
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
2.0 to 19
Resilience: Unit (Modulus of Resilience), kJ/m3 1000
5.7 to 180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 30
8.7 to 19
Strength to Weight: Bending, points 25
16 to 26
Thermal Diffusivity, mm2/s 4.3
92
Thermal Shock Resistance, points 31
3.8 to 8.1

Alloy Composition

Aluminum (Al), % 0
99 to 100
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 11 to 13
0
Copper (Cu), % 0.2 to 0.8
0 to 0.050
Iron (Fe), % 73.8 to 80.5
0 to 1.0
Manganese (Mn), % 0 to 2.0
0 to 0.050
Molybdenum (Mo), % 2.3 to 2.8
0
Nickel (Ni), % 6.0 to 7.0
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.0030
0
Titanium (Ti), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15