MakeItFrom.com
Menu (ESC)

EN 1.4424 Stainless Steel vs. 238.0 Aluminum

EN 1.4424 stainless steel belongs to the iron alloys classification, while 238.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4424 stainless steel and the bottom bar is 238.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
76
Elongation at Break, % 28
1.5
Fatigue Strength, MPa 350 to 370
110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
28
Tensile Strength: Ultimate (UTS), MPa 800
210
Tensile Strength: Yield (Proof), MPa 480 to 500
170

Thermal Properties

Latent Heat of Fusion, J/g 310
430
Maximum Temperature: Mechanical, °C 960
170
Melting Completion (Liquidus), °C 1430
600
Melting Onset (Solidus), °C 1390
510
Specific Heat Capacity, J/kg-K 480
840
Thermal Conductivity, W/m-K 13
100
Thermal Expansion, µm/m-K 12
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
25
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
67

Otherwise Unclassified Properties

Base Metal Price, % relative 15
12
Density, g/cm3 7.7
3.4
Embodied Carbon, kg CO2/kg material 3.4
7.4
Embodied Energy, MJ/kg 46
140
Embodied Water, L/kg 140
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190 to 200
2.9
Resilience: Unit (Modulus of Resilience), kJ/m3 580 to 640
180
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 25
42
Strength to Weight: Axial, points 29
17
Strength to Weight: Bending, points 25
23
Thermal Diffusivity, mm2/s 3.5
37
Thermal Shock Resistance, points 23
9.1

Alloy Composition

Aluminum (Al), % 0
81.9 to 84.9
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 19
0
Copper (Cu), % 0
9.5 to 10.5
Iron (Fe), % 68.6 to 72.4
1.0 to 1.5
Magnesium (Mg), % 0
0 to 0.25
Manganese (Mn), % 1.2 to 2.0
0
Molybdenum (Mo), % 2.5 to 3.0
0
Nickel (Ni), % 4.5 to 5.2
0
Nitrogen (N), % 0.050 to 0.1
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 1.4 to 2.0
3.6 to 4.4
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
1.0 to 1.5