MakeItFrom.com
Menu (ESC)

EN 1.4424 Stainless Steel vs. EN AC-42100 Aluminum

EN 1.4424 stainless steel belongs to the iron alloys classification, while EN AC-42100 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4424 stainless steel and the bottom bar is EN AC-42100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
91
Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 28
3.4 to 9.0
Fatigue Strength, MPa 350 to 370
76 to 82
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Tensile Strength: Ultimate (UTS), MPa 800
280 to 290
Tensile Strength: Yield (Proof), MPa 480 to 500
210 to 230

Thermal Properties

Latent Heat of Fusion, J/g 310
500
Maximum Temperature: Mechanical, °C 960
170
Melting Completion (Liquidus), °C 1430
610
Melting Onset (Solidus), °C 1390
600
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 13
150
Thermal Expansion, µm/m-K 12
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
41
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
140

Otherwise Unclassified Properties

Base Metal Price, % relative 15
9.5
Density, g/cm3 7.7
2.6
Embodied Carbon, kg CO2/kg material 3.4
8.0
Embodied Energy, MJ/kg 46
150
Embodied Water, L/kg 140
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190 to 200
9.1 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 580 to 640
300 to 370
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 29
30 to 31
Strength to Weight: Bending, points 25
37 to 38
Thermal Diffusivity, mm2/s 3.5
66
Thermal Shock Resistance, points 23
13

Alloy Composition

Aluminum (Al), % 0
91.3 to 93.3
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 19
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 68.6 to 72.4
0 to 0.19
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 1.2 to 2.0
0 to 0.1
Molybdenum (Mo), % 2.5 to 3.0
0
Nickel (Ni), % 4.5 to 5.2
0
Nitrogen (N), % 0.050 to 0.1
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 1.4 to 2.0
6.5 to 7.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1