MakeItFrom.com
Menu (ESC)

EN 1.4424 Stainless Steel vs. C18900 Copper

EN 1.4424 stainless steel belongs to the iron alloys classification, while C18900 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4424 stainless steel and the bottom bar is C18900 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 28
14 to 48
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
43
Shear Strength, MPa 520
190 to 300
Tensile Strength: Ultimate (UTS), MPa 800
260 to 500
Tensile Strength: Yield (Proof), MPa 480 to 500
67 to 390

Thermal Properties

Latent Heat of Fusion, J/g 310
210
Maximum Temperature: Mechanical, °C 960
200
Melting Completion (Liquidus), °C 1430
1080
Melting Onset (Solidus), °C 1390
1020
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 13
130
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
30
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
30

Otherwise Unclassified Properties

Base Metal Price, % relative 15
31
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 3.4
2.7
Embodied Energy, MJ/kg 46
42
Embodied Water, L/kg 140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190 to 200
65 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 580 to 640
20 to 660
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 29
8.2 to 16
Strength to Weight: Bending, points 25
10 to 16
Thermal Diffusivity, mm2/s 3.5
38
Thermal Shock Resistance, points 23
9.3 to 18

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 19
0
Copper (Cu), % 0
97.7 to 99.15
Iron (Fe), % 68.6 to 72.4
0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 1.2 to 2.0
0.1 to 0.3
Molybdenum (Mo), % 2.5 to 3.0
0
Nickel (Ni), % 4.5 to 5.2
0
Nitrogen (N), % 0.050 to 0.1
0
Phosphorus (P), % 0 to 0.035
0 to 0.050
Silicon (Si), % 1.4 to 2.0
0.15 to 0.4
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.6 to 0.9
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5