MakeItFrom.com
Menu (ESC)

EN 1.4436 Stainless Steel vs. S33425 Stainless Steel

Both EN 1.4436 stainless steel and S33425 stainless steel are iron alloys. They have 85% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4436 stainless steel and the bottom bar is S33425 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 42
45
Fatigue Strength, MPa 220
210
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
79
Shear Strength, MPa 430
400
Tensile Strength: Ultimate (UTS), MPa 620
580
Tensile Strength: Yield (Proof), MPa 240
230

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 410
500
Maximum Temperature: Mechanical, °C 960
1100
Melting Completion (Liquidus), °C 1450
1430
Melting Onset (Solidus), °C 1400
1380
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
14
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 19
27
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 3.9
5.1
Embodied Energy, MJ/kg 54
71
Embodied Water, L/kg 150
190

Common Calculations

PREN (Pitting Resistance) 27
30
Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
210
Resilience: Unit (Modulus of Resilience), kJ/m3 150
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22
20
Strength to Weight: Bending, points 20
19
Thermal Diffusivity, mm2/s 4.0
3.7
Thermal Shock Resistance, points 14
13

Alloy Composition

Aluminum (Al), % 0
0.15 to 0.6
Carbon (C), % 0 to 0.050
0 to 0.080
Chromium (Cr), % 16.5 to 18.5
21 to 23
Iron (Fe), % 62.3 to 70.5
47.2 to 56.7
Manganese (Mn), % 0 to 2.0
0 to 1.5
Molybdenum (Mo), % 2.5 to 3.0
2.0 to 3.0
Nickel (Ni), % 10.5 to 13
20 to 23
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.020
Titanium (Ti), % 0
0.15 to 0.6