MakeItFrom.com
Menu (ESC)

EN 1.4438 Stainless Steel vs. N08801 Stainless Steel

Both EN 1.4438 stainless steel and N08801 stainless steel are iron alloys. They have 79% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4438 stainless steel and the bottom bar is N08801 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 41
34
Fatigue Strength, MPa 220
260
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 79
77
Shear Strength, MPa 420
570
Tensile Strength: Ultimate (UTS), MPa 620
860
Tensile Strength: Yield (Proof), MPa 250
190

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 420
630
Maximum Temperature: Mechanical, °C 1000
1090
Melting Completion (Liquidus), °C 1450
1390
Melting Onset (Solidus), °C 1400
1360
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 14
12
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 22
30
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 4.4
5.5
Embodied Energy, MJ/kg 60
79
Embodied Water, L/kg 160
200

Common Calculations

PREN (Pitting Resistance) 31
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
220
Resilience: Unit (Modulus of Resilience), kJ/m3 150
92
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 22
30
Strength to Weight: Bending, points 20
25
Thermal Diffusivity, mm2/s 3.7
3.3
Thermal Shock Resistance, points 14
20

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.1
Chromium (Cr), % 17.5 to 19.5
19 to 22
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 57.3 to 66.5
39.5 to 50.3
Manganese (Mn), % 0 to 2.0
0 to 1.5
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 13 to 16
30 to 34
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0
0.75 to 1.5