MakeItFrom.com
Menu (ESC)

EN 1.4443 Stainless Steel vs. 3005 Aluminum

EN 1.4443 stainless steel belongs to the iron alloys classification, while 3005 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4443 stainless steel and the bottom bar is 3005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
33 to 73
Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 34
1.1 to 16
Fatigue Strength, MPa 170
53 to 100
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Tensile Strength: Ultimate (UTS), MPa 490
140 to 270
Tensile Strength: Yield (Proof), MPa 210
51 to 240

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1000
180
Melting Completion (Liquidus), °C 1440
660
Melting Onset (Solidus), °C 1400
640
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 15
160
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
42
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
140

Otherwise Unclassified Properties

Base Metal Price, % relative 20
9.5
Density, g/cm3 7.9
2.8
Embodied Carbon, kg CO2/kg material 4.0
8.2
Embodied Energy, MJ/kg 54
150
Embodied Water, L/kg 160
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
2.2 to 18
Resilience: Unit (Modulus of Resilience), kJ/m3 110
18 to 390
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 17
14 to 27
Strength to Weight: Bending, points 18
21 to 33
Thermal Diffusivity, mm2/s 3.9
64
Thermal Shock Resistance, points 11
6.0 to 12

Alloy Composition

Aluminum (Al), % 0
95.7 to 98.8
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 18 to 20
0 to 0.1
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 60.4 to 69.5
0 to 0.7
Magnesium (Mg), % 0
0.2 to 0.6
Manganese (Mn), % 0 to 2.0
1.0 to 1.5
Molybdenum (Mo), % 2.5 to 3.0
0
Nickel (Ni), % 10 to 13
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0 to 0.6
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15