MakeItFrom.com
Menu (ESC)

EN 1.4443 Stainless Steel vs. 357.0 Aluminum

EN 1.4443 stainless steel belongs to the iron alloys classification, while 357.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4443 stainless steel and the bottom bar is 357.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
95
Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 34
3.4
Fatigue Strength, MPa 170
76
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Tensile Strength: Ultimate (UTS), MPa 490
350
Tensile Strength: Yield (Proof), MPa 210
300

Thermal Properties

Latent Heat of Fusion, J/g 300
500
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1440
620
Melting Onset (Solidus), °C 1400
560
Specific Heat Capacity, J/kg-K 470
910
Thermal Conductivity, W/m-K 15
150
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
39
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
140

Otherwise Unclassified Properties

Base Metal Price, % relative 20
9.5
Density, g/cm3 7.9
2.6
Embodied Carbon, kg CO2/kg material 4.0
8.0
Embodied Energy, MJ/kg 54
150
Embodied Water, L/kg 160
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
11
Resilience: Unit (Modulus of Resilience), kJ/m3 110
620
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 17
38
Strength to Weight: Bending, points 18
43
Thermal Diffusivity, mm2/s 3.9
64
Thermal Shock Resistance, points 11
17

Alloy Composition

Aluminum (Al), % 0
91.3 to 93.1
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 60.4 to 69.5
0 to 0.15
Magnesium (Mg), % 0
0.45 to 0.6
Manganese (Mn), % 0 to 2.0
0 to 0.030
Molybdenum (Mo), % 2.5 to 3.0
0
Nickel (Ni), % 10 to 13
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
6.5 to 7.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.15