MakeItFrom.com
Menu (ESC)

EN 1.4443 Stainless Steel vs. 5042 Aluminum

EN 1.4443 stainless steel belongs to the iron alloys classification, while 5042 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4443 stainless steel and the bottom bar is 5042 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 34
1.1 to 3.4
Fatigue Strength, MPa 170
97 to 120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Tensile Strength: Ultimate (UTS), MPa 490
340 to 360
Tensile Strength: Yield (Proof), MPa 210
270 to 310

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1000
180
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1400
570
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 15
130
Thermal Expansion, µm/m-K 16
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
33
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
110

Otherwise Unclassified Properties

Base Metal Price, % relative 20
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 4.0
8.8
Embodied Energy, MJ/kg 54
150
Embodied Water, L/kg 160
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
3.6 to 12
Resilience: Unit (Modulus of Resilience), kJ/m3 110
550 to 720
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 17
35 to 37
Strength to Weight: Bending, points 18
40 to 42
Thermal Diffusivity, mm2/s 3.9
53
Thermal Shock Resistance, points 11
15 to 16

Alloy Composition

Aluminum (Al), % 0
94.2 to 96.8
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 18 to 20
0 to 0.1
Copper (Cu), % 0
0 to 0.15
Iron (Fe), % 60.4 to 69.5
0 to 0.35
Magnesium (Mg), % 0
3.0 to 4.0
Manganese (Mn), % 0 to 2.0
0.2 to 0.5
Molybdenum (Mo), % 2.5 to 3.0
0
Nickel (Ni), % 10 to 13
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15