MakeItFrom.com
Menu (ESC)

EN 1.4449 Stainless Steel vs. EN 1.8891 Steel

Both EN 1.4449 stainless steel and EN 1.8891 steel are iron alloys. They have 68% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4449 stainless steel and the bottom bar is EN 1.8891 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
180
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 48
19
Fatigue Strength, MPa 240
330
Impact Strength: V-Notched Charpy, J 91
40
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
73
Shear Strength, MPa 440
380
Tensile Strength: Ultimate (UTS), MPa 620
610
Tensile Strength: Yield (Proof), MPa 250
480

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 960
400
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
46
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 19
2.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.9
1.7
Embodied Energy, MJ/kg 54
24
Embodied Water, L/kg 150
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
110
Resilience: Unit (Modulus of Resilience), kJ/m3 160
630
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 22
22
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 4.0
12
Thermal Shock Resistance, points 14
18

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.035
0 to 0.2
Chromium (Cr), % 17 to 18.2
0 to 0.3
Copper (Cu), % 0 to 1.0
0 to 0.7
Iron (Fe), % 62.4 to 69.3
95.2 to 99
Manganese (Mn), % 0 to 2.0
1.0 to 1.7
Molybdenum (Mo), % 2.3 to 2.8
0 to 0.1
Nickel (Ni), % 11.5 to 12.5
0 to 0.8
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0 to 0.080
0 to 0.025
Phosphorus (P), % 0 to 0.045
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 0.6
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.2