MakeItFrom.com
Menu (ESC)

EN 1.4458 Stainless Steel vs. C18400 Copper

EN 1.4458 stainless steel belongs to the iron alloys classification, while C18400 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4458 stainless steel and the bottom bar is C18400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34
13 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
44
Tensile Strength: Ultimate (UTS), MPa 510
270 to 490
Tensile Strength: Yield (Proof), MPa 190
110 to 480

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1420
1080
Melting Onset (Solidus), °C 1370
1070
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 16
320
Thermal Expansion, µm/m-K 15
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
80
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
81

Otherwise Unclassified Properties

Base Metal Price, % relative 30
31
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 5.4
2.6
Embodied Energy, MJ/kg 75
41
Embodied Water, L/kg 200
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
63 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 89
54 to 980
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 17
8.5 to 15
Strength to Weight: Bending, points 18
10 to 16
Thermal Diffusivity, mm2/s 4.2
94
Thermal Shock Resistance, points 12
9.6 to 17

Alloy Composition

Arsenic (As), % 0
0 to 0.0050
Calcium (Ca), % 0
0 to 0.0050
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 22
0.4 to 1.2
Copper (Cu), % 0 to 2.0
97.2 to 99.6
Iron (Fe), % 40.2 to 53
0 to 0.15
Lithium (Li), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 2.0 to 2.5
0
Nickel (Ni), % 26 to 30
0
Nitrogen (N), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.035
0 to 0.050
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.025
0
Zinc (Zn), % 0
0 to 0.7
Residuals, % 0
0 to 0.5