MakeItFrom.com
Menu (ESC)

EN 1.4460 Stainless Steel vs. EN-MC35110 Magnesium

EN 1.4460 stainless steel belongs to the iron alloys classification, while EN-MC35110 magnesium belongs to the magnesium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4460 stainless steel and the bottom bar is EN-MC35110 magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
63
Elastic (Young's, Tensile) Modulus, GPa 200
45
Elongation at Break, % 21
3.1
Fatigue Strength, MPa 330
110
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 80
18
Shear Strength, MPa 470
130
Tensile Strength: Ultimate (UTS), MPa 750
230
Tensile Strength: Yield (Proof), MPa 510
150

Thermal Properties

Latent Heat of Fusion, J/g 300
330
Maximum Temperature: Mechanical, °C 1100
140
Melting Completion (Liquidus), °C 1430
600
Melting Onset (Solidus), °C 1390
520
Specific Heat Capacity, J/kg-K 480
970
Thermal Conductivity, W/m-K 15
110
Thermal Expansion, µm/m-K 13
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
27
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
130

Otherwise Unclassified Properties

Base Metal Price, % relative 18
18
Density, g/cm3 7.7
1.9
Embodied Carbon, kg CO2/kg material 3.4
24
Embodied Energy, MJ/kg 48
170
Embodied Water, L/kg 180
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
6.3
Resilience: Unit (Modulus of Resilience), kJ/m3 640
260
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
63
Strength to Weight: Axial, points 27
34
Strength to Weight: Bending, points 24
44
Thermal Diffusivity, mm2/s 4.0
61
Thermal Shock Resistance, points 20
14

Alloy Composition

Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 25 to 28
0
Copper (Cu), % 0
0 to 0.030
Iron (Fe), % 60.2 to 69.2
0 to 0.010
Magnesium (Mg), % 0
92 to 95.4
Manganese (Mn), % 0 to 2.0
0 to 0.15
Molybdenum (Mo), % 1.3 to 2.0
0
Nickel (Ni), % 4.5 to 6.5
0 to 0.0050
Nitrogen (N), % 0.050 to 0.2
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0 to 0.010
Sulfur (S), % 0 to 0.015
0
Unspecified Rare Earths, % 0
0.75 to 1.8
Zinc (Zn), % 0
3.5 to 5.0
Zirconium (Zr), % 0
0.4 to 1.0
Residuals, % 0
0 to 0.010