MakeItFrom.com
Menu (ESC)

EN 1.4460 Stainless Steel vs. C50100 Bronze

EN 1.4460 stainless steel belongs to the iron alloys classification, while C50100 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4460 stainless steel and the bottom bar is C50100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 21
40
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 80
43
Shear Strength, MPa 470
180
Tensile Strength: Ultimate (UTS), MPa 750
270
Tensile Strength: Yield (Proof), MPa 510
82

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1430
1080
Melting Onset (Solidus), °C 1390
1070
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 15
230
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
55
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
55

Otherwise Unclassified Properties

Base Metal Price, % relative 18
31
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 3.4
2.6
Embodied Energy, MJ/kg 48
42
Embodied Water, L/kg 180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
82
Resilience: Unit (Modulus of Resilience), kJ/m3 640
29
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 27
8.3
Strength to Weight: Bending, points 24
10
Thermal Diffusivity, mm2/s 4.0
66
Thermal Shock Resistance, points 20
9.5

Alloy Composition

Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 25 to 28
0
Copper (Cu), % 0
98.6 to 99.49
Iron (Fe), % 60.2 to 69.2
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 1.3 to 2.0
0
Nickel (Ni), % 4.5 to 6.5
0
Nitrogen (N), % 0.050 to 0.2
0
Phosphorus (P), % 0 to 0.035
0.010 to 0.050
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.5 to 0.8
Residuals, % 0
0 to 0.5