MakeItFrom.com
Menu (ESC)

EN 1.4462 Stainless Steel vs. EN AC-46300 Aluminum

EN 1.4462 stainless steel belongs to the iron alloys classification, while EN AC-46300 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4462 stainless steel and the bottom bar is EN AC-46300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
91
Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 26
1.1
Fatigue Strength, MPa 370
79
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 780
200
Tensile Strength: Yield (Proof), MPa 520
110

Thermal Properties

Latent Heat of Fusion, J/g 300
490
Maximum Temperature: Mechanical, °C 1060
170
Melting Completion (Liquidus), °C 1450
630
Melting Onset (Solidus), °C 1400
530
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 15
120
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
27
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
84

Otherwise Unclassified Properties

Base Metal Price, % relative 17
10
Density, g/cm3 7.8
2.9
Embodied Carbon, kg CO2/kg material 3.6
7.7
Embodied Energy, MJ/kg 49
140
Embodied Water, L/kg 160
1060

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
1.9
Resilience: Unit (Modulus of Resilience), kJ/m3 670
89
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 28
20
Strength to Weight: Bending, points 24
27
Thermal Diffusivity, mm2/s 4.0
47
Thermal Shock Resistance, points 21
9.1

Alloy Composition

Aluminum (Al), % 0
84 to 90
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 21 to 23
0
Copper (Cu), % 0
3.0 to 4.0
Iron (Fe), % 63.7 to 71.9
0 to 0.8
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0
0.3 to 0.6
Manganese (Mn), % 0 to 2.0
0.2 to 0.65
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 4.5 to 6.5
0 to 0.3
Nitrogen (N), % 0.1 to 0.22
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
6.5 to 8.0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.65
Residuals, % 0
0 to 0.55