MakeItFrom.com
Menu (ESC)

EN 1.4468 Stainless Steel vs. AISI 441 Stainless Steel

Both EN 1.4468 stainless steel and AISI 441 stainless steel are iron alloys. They have 84% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4468 stainless steel and the bottom bar is AISI 441 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 25
23
Fatigue Strength, MPa 380
180
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
77
Tensile Strength: Ultimate (UTS), MPa 730
470
Tensile Strength: Yield (Proof), MPa 550
270

Thermal Properties

Latent Heat of Fusion, J/g 300
280
Maximum Temperature: Corrosion, °C 450
550
Maximum Temperature: Mechanical, °C 1100
910
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 17
23
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 19
13
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.8
2.8
Embodied Energy, MJ/kg 53
41
Embodied Water, L/kg 180
130

Common Calculations

PREN (Pitting Resistance) 38
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
92
Resilience: Unit (Modulus of Resilience), kJ/m3 730
190
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 26
17
Strength to Weight: Bending, points 23
17
Thermal Diffusivity, mm2/s 4.6
6.1
Thermal Shock Resistance, points 20
16

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 24.5 to 26.5
17.5 to 19.5
Iron (Fe), % 59.7 to 67.4
76 to 82.2
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 5.5 to 7.0
0 to 1.0
Niobium (Nb), % 0
0.3 to 0.9
Nitrogen (N), % 0.12 to 0.25
0 to 0.030
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.030
Titanium (Ti), % 0
0.1 to 0.5