MakeItFrom.com
Menu (ESC)

EN 1.4468 Stainless Steel vs. EN 1.0452 Steel

Both EN 1.4468 stainless steel and EN 1.0452 steel are iron alloys. They have 65% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4468 stainless steel and the bottom bar is EN 1.0452 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 25
25
Fatigue Strength, MPa 380
210
Impact Strength: V-Notched Charpy, J 56
51
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 80
73
Tensile Strength: Ultimate (UTS), MPa 730
430
Tensile Strength: Yield (Proof), MPa 550
290

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
48
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 19
2.1
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.8
1.5
Embodied Energy, MJ/kg 53
19
Embodied Water, L/kg 180
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
94
Resilience: Unit (Modulus of Resilience), kJ/m3 730
220
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 26
15
Strength to Weight: Bending, points 23
16
Thermal Diffusivity, mm2/s 4.6
13
Thermal Shock Resistance, points 20
13

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.030
0 to 0.17
Chromium (Cr), % 24.5 to 26.5
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 59.7 to 67.4
97.1 to 99.58
Manganese (Mn), % 0 to 2.0
0.4 to 1.2
Molybdenum (Mo), % 2.5 to 3.5
0 to 0.080
Nickel (Ni), % 5.5 to 7.0
0 to 0.3
Niobium (Nb), % 0
0 to 0.010
Nitrogen (N), % 0.12 to 0.25
0
Phosphorus (P), % 0 to 0.035
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.35
Sulfur (S), % 0 to 0.025
0 to 0.010
Titanium (Ti), % 0
0 to 0.040
Vanadium (V), % 0
0 to 0.020