MakeItFrom.com
Menu (ESC)

EN 1.4474 Stainless Steel vs. 2618 Aluminum

EN 1.4474 stainless steel belongs to the iron alloys classification, while 2618 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4474 stainless steel and the bottom bar is 2618 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 23
5.8
Fatigue Strength, MPa 320
110
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 670
420
Tensile Strength: Yield (Proof), MPa 480
350

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Maximum Temperature: Mechanical, °C 1100
210
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1390
550
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 17
160
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
37
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
110

Otherwise Unclassified Properties

Base Metal Price, % relative 17
11
Density, g/cm3 7.7
2.9
Embodied Carbon, kg CO2/kg material 3.4
8.3
Embodied Energy, MJ/kg 48
150
Embodied Water, L/kg 170
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
23
Resilience: Unit (Modulus of Resilience), kJ/m3 560
850
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 24
40
Strength to Weight: Bending, points 22
42
Thermal Diffusivity, mm2/s 4.6
62
Thermal Shock Resistance, points 18
19

Alloy Composition

Aluminum (Al), % 0
92.4 to 94.9
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 25 to 27
0
Copper (Cu), % 0
1.9 to 2.7
Iron (Fe), % 61.2 to 69.1
0.9 to 1.3
Magnesium (Mg), % 0
1.3 to 1.8
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 1.3 to 2.0
0
Nickel (Ni), % 4.5 to 6.5
0.9 to 1.2
Nitrogen (N), % 0.12 to 0.2
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0.1 to 0.25
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0.040 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15