MakeItFrom.com
Menu (ESC)

EN 1.4477 Stainless Steel vs. EN 1.4983 Stainless Steel

Both EN 1.4477 stainless steel and EN 1.4983 stainless steel are iron alloys. They have 87% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4477 stainless steel and the bottom bar is EN 1.4983 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
190
Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 22 to 23
40
Fatigue Strength, MPa 420 to 490
200
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 81
78
Shear Strength, MPa 550 to 580
430
Tensile Strength: Ultimate (UTS), MPa 880 to 930
630
Tensile Strength: Yield (Proof), MPa 620 to 730
230

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 460
520
Maximum Temperature: Mechanical, °C 1100
940
Melting Completion (Liquidus), °C 1430
1440
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 13
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 20
19
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 3.7
4.1
Embodied Energy, MJ/kg 52
56
Embodied Water, L/kg 190
150

Common Calculations

PREN (Pitting Resistance) 41
24
Resilience: Ultimate (Unit Rupture Work), MJ/m3 180 to 190
200
Resilience: Unit (Modulus of Resilience), kJ/m3 940 to 1290
140
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 31 to 33
22
Strength to Weight: Bending, points 26 to 27
21
Thermal Diffusivity, mm2/s 3.5
4.0
Thermal Shock Resistance, points 23 to 25
14

Alloy Composition

Boron (B), % 0
0.0015 to 0.0060
Carbon (C), % 0 to 0.030
0.040 to 0.080
Chromium (Cr), % 28 to 30
16 to 18
Copper (Cu), % 0 to 0.8
0
Iron (Fe), % 56.6 to 63.6
61.8 to 69.6
Manganese (Mn), % 0.8 to 1.5
0 to 2.0
Molybdenum (Mo), % 1.5 to 2.6
2.0 to 2.5
Nickel (Ni), % 5.8 to 7.5
12 to 14
Nitrogen (N), % 0.3 to 0.4
0
Phosphorus (P), % 0 to 0.030
0 to 0.035
Silicon (Si), % 0 to 0.5
0 to 0.75
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0
0.4 to 0.8