MakeItFrom.com
Menu (ESC)

EN 1.4477 Stainless Steel vs. EN 1.8896 Steel

Both EN 1.4477 stainless steel and EN 1.8896 steel are iron alloys. They have 61% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4477 stainless steel and the bottom bar is EN 1.8896 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
150
Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 22 to 23
24
Fatigue Strength, MPa 420 to 490
280
Impact Strength: V-Notched Charpy, J 110
45
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 81
73
Shear Strength, MPa 550 to 580
330
Tensile Strength: Ultimate (UTS), MPa 880 to 930
510
Tensile Strength: Yield (Proof), MPa 620 to 730
390

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 13
49
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 20
2.2
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 3.7
1.6
Embodied Energy, MJ/kg 52
21
Embodied Water, L/kg 190
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180 to 190
110
Resilience: Unit (Modulus of Resilience), kJ/m3 940 to 1290
400
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 31 to 33
18
Strength to Weight: Bending, points 26 to 27
18
Thermal Diffusivity, mm2/s 3.5
13
Thermal Shock Resistance, points 23 to 25
15

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.030
0 to 0.14
Chromium (Cr), % 28 to 30
0
Copper (Cu), % 0 to 0.8
0
Iron (Fe), % 56.6 to 63.6
97 to 99.98
Manganese (Mn), % 0.8 to 1.5
0 to 1.5
Molybdenum (Mo), % 1.5 to 2.6
0 to 0.2
Nickel (Ni), % 5.8 to 7.5
0 to 0.3
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0.3 to 0.4
0 to 0.020
Phosphorus (P), % 0 to 0.030
0 to 0.035
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.1