MakeItFrom.com
Menu (ESC)

EN 1.4477 Stainless Steel vs. EN-MC35110 Magnesium

EN 1.4477 stainless steel belongs to the iron alloys classification, while EN-MC35110 magnesium belongs to the magnesium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4477 stainless steel and the bottom bar is EN-MC35110 magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
63
Elastic (Young's, Tensile) Modulus, GPa 210
45
Elongation at Break, % 22 to 23
3.1
Fatigue Strength, MPa 420 to 490
110
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 81
18
Shear Strength, MPa 550 to 580
130
Tensile Strength: Ultimate (UTS), MPa 880 to 930
230
Tensile Strength: Yield (Proof), MPa 620 to 730
150

Thermal Properties

Latent Heat of Fusion, J/g 300
330
Maximum Temperature: Mechanical, °C 1100
140
Melting Completion (Liquidus), °C 1430
600
Melting Onset (Solidus), °C 1380
520
Specific Heat Capacity, J/kg-K 480
970
Thermal Conductivity, W/m-K 13
110
Thermal Expansion, µm/m-K 13
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
27
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
130

Otherwise Unclassified Properties

Base Metal Price, % relative 20
18
Density, g/cm3 7.7
1.9
Embodied Carbon, kg CO2/kg material 3.7
24
Embodied Energy, MJ/kg 52
170
Embodied Water, L/kg 190
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180 to 190
6.3
Resilience: Unit (Modulus of Resilience), kJ/m3 940 to 1290
260
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
63
Strength to Weight: Axial, points 31 to 33
34
Strength to Weight: Bending, points 26 to 27
44
Thermal Diffusivity, mm2/s 3.5
61
Thermal Shock Resistance, points 23 to 25
14

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 28 to 30
0
Copper (Cu), % 0 to 0.8
0 to 0.030
Iron (Fe), % 56.6 to 63.6
0 to 0.010
Magnesium (Mg), % 0
92 to 95.4
Manganese (Mn), % 0.8 to 1.5
0 to 0.15
Molybdenum (Mo), % 1.5 to 2.6
0
Nickel (Ni), % 5.8 to 7.5
0 to 0.0050
Nitrogen (N), % 0.3 to 0.4
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.010
Sulfur (S), % 0 to 0.015
0
Unspecified Rare Earths, % 0
0.75 to 1.8
Zinc (Zn), % 0
3.5 to 5.0
Zirconium (Zr), % 0
0.4 to 1.0
Residuals, % 0
0 to 0.010