MakeItFrom.com
Menu (ESC)

EN 1.4477 Stainless Steel vs. Grade 19 Titanium

EN 1.4477 stainless steel belongs to the iron alloys classification, while grade 19 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4477 stainless steel and the bottom bar is grade 19 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 22 to 23
5.6 to 17
Fatigue Strength, MPa 420 to 490
550 to 620
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 81
47
Shear Strength, MPa 550 to 580
550 to 750
Tensile Strength: Ultimate (UTS), MPa 880 to 930
890 to 1300
Tensile Strength: Yield (Proof), MPa 620 to 730
870 to 1170

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1100
370
Melting Completion (Liquidus), °C 1430
1660
Melting Onset (Solidus), °C 1380
1600
Specific Heat Capacity, J/kg-K 480
520
Thermal Conductivity, W/m-K 13
6.2
Thermal Expansion, µm/m-K 13
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 20
45
Density, g/cm3 7.7
5.0
Embodied Carbon, kg CO2/kg material 3.7
47
Embodied Energy, MJ/kg 52
760
Embodied Water, L/kg 190
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180 to 190
70 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 940 to 1290
3040 to 5530
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
33
Strength to Weight: Axial, points 31 to 33
49 to 72
Strength to Weight: Bending, points 26 to 27
41 to 53
Thermal Diffusivity, mm2/s 3.5
2.4
Thermal Shock Resistance, points 23 to 25
57 to 83

Alloy Composition

Aluminum (Al), % 0
3.0 to 4.0
Carbon (C), % 0 to 0.030
0 to 0.050
Chromium (Cr), % 28 to 30
5.5 to 6.5
Copper (Cu), % 0 to 0.8
0
Hydrogen (H), % 0
0 to 0.020
Iron (Fe), % 56.6 to 63.6
0 to 0.3
Manganese (Mn), % 0.8 to 1.5
0
Molybdenum (Mo), % 1.5 to 2.6
3.5 to 4.5
Nickel (Ni), % 5.8 to 7.5
0
Nitrogen (N), % 0.3 to 0.4
0 to 0.030
Oxygen (O), % 0
0 to 0.12
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
71.1 to 77
Vanadium (V), % 0
7.5 to 8.5
Zirconium (Zr), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4

Comparable Variants