MakeItFrom.com
Menu (ESC)

EN 1.4477 Stainless Steel vs. Grade C-5 Titanium

EN 1.4477 stainless steel belongs to the iron alloys classification, while grade C-5 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4477 stainless steel and the bottom bar is grade C-5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
310
Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 22 to 23
6.7
Fatigue Strength, MPa 420 to 490
510
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 81
40
Tensile Strength: Ultimate (UTS), MPa 880 to 930
1000
Tensile Strength: Yield (Proof), MPa 620 to 730
940

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 1100
340
Melting Completion (Liquidus), °C 1430
1610
Melting Onset (Solidus), °C 1380
1560
Specific Heat Capacity, J/kg-K 480
560
Thermal Conductivity, W/m-K 13
7.1
Thermal Expansion, µm/m-K 13
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 20
36
Density, g/cm3 7.7
4.4
Embodied Carbon, kg CO2/kg material 3.7
38
Embodied Energy, MJ/kg 52
610
Embodied Water, L/kg 190
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180 to 190
66
Resilience: Unit (Modulus of Resilience), kJ/m3 940 to 1290
4200
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 31 to 33
63
Strength to Weight: Bending, points 26 to 27
50
Thermal Diffusivity, mm2/s 3.5
2.9
Thermal Shock Resistance, points 23 to 25
71

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0 to 0.030
0 to 0.1
Chromium (Cr), % 28 to 30
0
Copper (Cu), % 0 to 0.8
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 56.6 to 63.6
0 to 0.4
Manganese (Mn), % 0.8 to 1.5
0
Molybdenum (Mo), % 1.5 to 2.6
0
Nickel (Ni), % 5.8 to 7.5
0 to 0.050
Nitrogen (N), % 0.3 to 0.4
0
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4