MakeItFrom.com
Menu (ESC)

EN 1.4477 Stainless Steel vs. C18700 Copper

EN 1.4477 stainless steel belongs to the iron alloys classification, while C18700 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4477 stainless steel and the bottom bar is C18700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 22 to 23
9.0 to 9.6
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 81
43
Shear Strength, MPa 550 to 580
170 to 190
Tensile Strength: Ultimate (UTS), MPa 880 to 930
290 to 330
Tensile Strength: Yield (Proof), MPa 620 to 730
230 to 250

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1430
1080
Melting Onset (Solidus), °C 1380
950
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 13
380
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
98
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
99

Otherwise Unclassified Properties

Base Metal Price, % relative 20
30
Density, g/cm3 7.7
9.0
Embodied Carbon, kg CO2/kg material 3.7
2.6
Embodied Energy, MJ/kg 52
41
Embodied Water, L/kg 190
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180 to 190
24 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 940 to 1290
240 to 280
Stiffness to Weight: Axial, points 15
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 31 to 33
9.0 to 10
Strength to Weight: Bending, points 26 to 27
11 to 12
Thermal Diffusivity, mm2/s 3.5
110
Thermal Shock Resistance, points 23 to 25
10 to 12

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 28 to 30
0
Copper (Cu), % 0 to 0.8
98 to 99.2
Iron (Fe), % 56.6 to 63.6
0
Lead (Pb), % 0
0.8 to 1.5
Manganese (Mn), % 0.8 to 1.5
0
Molybdenum (Mo), % 1.5 to 2.6
0
Nickel (Ni), % 5.8 to 7.5
0
Nitrogen (N), % 0.3 to 0.4
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Residuals, % 0
0 to 0.5