MakeItFrom.com
Menu (ESC)

EN 1.4477 Stainless Steel vs. C86300 Bronze

EN 1.4477 stainless steel belongs to the iron alloys classification, while C86300 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4477 stainless steel and the bottom bar is C86300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
250
Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 22 to 23
14
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 81
42
Tensile Strength: Ultimate (UTS), MPa 880 to 930
850
Tensile Strength: Yield (Proof), MPa 620 to 730
480

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1430
920
Melting Onset (Solidus), °C 1380
890
Specific Heat Capacity, J/kg-K 480
420
Thermal Conductivity, W/m-K 13
35
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 20
23
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 3.7
3.0
Embodied Energy, MJ/kg 52
51
Embodied Water, L/kg 190
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180 to 190
100
Resilience: Unit (Modulus of Resilience), kJ/m3 940 to 1290
1030
Stiffness to Weight: Axial, points 15
7.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 31 to 33
30
Strength to Weight: Bending, points 26 to 27
25
Thermal Diffusivity, mm2/s 3.5
11
Thermal Shock Resistance, points 23 to 25
28

Alloy Composition

Aluminum (Al), % 0
5.0 to 7.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 28 to 30
0
Copper (Cu), % 0 to 0.8
60 to 66
Iron (Fe), % 56.6 to 63.6
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0.8 to 1.5
2.5 to 5.0
Molybdenum (Mo), % 1.5 to 2.6
0
Nickel (Ni), % 5.8 to 7.5
0 to 1.0
Nitrogen (N), % 0.3 to 0.4
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0