MakeItFrom.com
Menu (ESC)

EN 1.4482 Stainless Steel vs. 308.0 Aluminum

EN 1.4482 stainless steel belongs to the iron alloys classification, while 308.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4482 stainless steel and the bottom bar is 308.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 34
2.0
Fatigue Strength, MPa 420 to 450
89
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
27
Shear Strength, MPa 510 to 530
150
Tensile Strength: Ultimate (UTS), MPa 770 to 800
190
Tensile Strength: Yield (Proof), MPa 530 to 570
110

Thermal Properties

Latent Heat of Fusion, J/g 290
470
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1420
620
Melting Onset (Solidus), °C 1370
540
Specific Heat Capacity, J/kg-K 480
870
Thermal Conductivity, W/m-K 15
140
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
37
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
110

Otherwise Unclassified Properties

Base Metal Price, % relative 12
10
Density, g/cm3 7.7
2.9
Embodied Carbon, kg CO2/kg material 2.7
7.7
Embodied Energy, MJ/kg 38
140
Embodied Water, L/kg 150
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230 to 250
3.3
Resilience: Unit (Modulus of Resilience), kJ/m3 690 to 820
83
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 28 to 29
18
Strength to Weight: Bending, points 24 to 25
25
Thermal Diffusivity, mm2/s 4.0
55
Thermal Shock Resistance, points 21 to 22
9.2

Alloy Composition

Aluminum (Al), % 0
85.7 to 91
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19.5 to 21.5
0
Copper (Cu), % 0 to 1.0
4.0 to 5.0
Iron (Fe), % 66.1 to 74.9
0 to 1.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 4.0 to 6.0
0 to 0.5
Molybdenum (Mo), % 0.1 to 0.6
0
Nickel (Ni), % 1.5 to 3.5
0
Nitrogen (N), % 0.050 to 0.2
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
5.0 to 6.0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5