MakeItFrom.com
Menu (ESC)

EN 1.4482 Stainless Steel vs. EN-MC21210 Magnesium

EN 1.4482 stainless steel belongs to the iron alloys classification, while EN-MC21210 magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4482 stainless steel and the bottom bar is EN-MC21210 magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
44
Elongation at Break, % 34
14
Fatigue Strength, MPa 420 to 450
70
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
17
Shear Strength, MPa 510 to 530
110
Tensile Strength: Ultimate (UTS), MPa 770 to 800
190
Tensile Strength: Yield (Proof), MPa 530 to 570
90

Thermal Properties

Latent Heat of Fusion, J/g 290
350
Maximum Temperature: Mechanical, °C 980
100
Melting Completion (Liquidus), °C 1420
600
Melting Onset (Solidus), °C 1370
570
Specific Heat Capacity, J/kg-K 480
1000
Thermal Conductivity, W/m-K 15
120
Thermal Expansion, µm/m-K 13
27

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
24
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
130

Otherwise Unclassified Properties

Base Metal Price, % relative 12
12
Density, g/cm3 7.7
1.6
Embodied Carbon, kg CO2/kg material 2.7
24
Embodied Energy, MJ/kg 38
160
Embodied Water, L/kg 150
980

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230 to 250
22
Resilience: Unit (Modulus of Resilience), kJ/m3 690 to 820
92
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
72
Strength to Weight: Axial, points 28 to 29
32
Strength to Weight: Bending, points 24 to 25
44
Thermal Diffusivity, mm2/s 4.0
76
Thermal Shock Resistance, points 21 to 22
11

Alloy Composition

Aluminum (Al), % 0
1.6 to 2.6
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19.5 to 21.5
0
Copper (Cu), % 0 to 1.0
0 to 0.010
Iron (Fe), % 66.1 to 74.9
0 to 0.0050
Magnesium (Mg), % 0
96.3 to 98.3
Manganese (Mn), % 4.0 to 6.0
0.1 to 0.7
Molybdenum (Mo), % 0.1 to 0.6
0
Nickel (Ni), % 1.5 to 3.5
0 to 0.0020
Nitrogen (N), % 0.050 to 0.2
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.010