EN 1.4482 Stainless Steel vs. SAE-AISI 1064 Steel
Both EN 1.4482 stainless steel and SAE-AISI 1064 steel are iron alloys. They have 71% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.
For each property being compared, the top bar is EN 1.4482 stainless steel and the bottom bar is SAE-AISI 1064 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
190 |
Elongation at Break, % | 34 | |
12 to 13 |
Fatigue Strength, MPa | 420 to 450 | |
300 |
Poisson's Ratio | 0.28 | |
0.29 |
Shear Modulus, GPa | 78 | |
72 |
Shear Strength, MPa | 510 to 530 | |
430 to 440 |
Tensile Strength: Ultimate (UTS), MPa | 770 to 800 | |
720 to 730 |
Tensile Strength: Yield (Proof), MPa | 530 to 570 | |
470 to 480 |
Thermal Properties
Latent Heat of Fusion, J/g | 290 | |
250 |
Maximum Temperature: Mechanical, °C | 980 | |
400 |
Melting Completion (Liquidus), °C | 1420 | |
1460 |
Melting Onset (Solidus), °C | 1370 | |
1420 |
Specific Heat Capacity, J/kg-K | 480 | |
470 |
Thermal Conductivity, W/m-K | 15 | |
51 |
Thermal Expansion, µm/m-K | 13 | |
11 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 2.2 | |
7.0 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 2.6 | |
8.1 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 12 | |
1.8 |
Density, g/cm3 | 7.7 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 2.7 | |
1.4 |
Embodied Energy, MJ/kg | 38 | |
19 |
Embodied Water, L/kg | 150 | |
46 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 230 to 250 | |
79 to 81 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 690 to 820 | |
600 to 630 |
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 25 | |
24 |
Strength to Weight: Axial, points | 28 to 29 | |
25 to 26 |
Strength to Weight: Bending, points | 24 to 25 | |
23 |
Thermal Diffusivity, mm2/s | 4.0 | |
14 |
Thermal Shock Resistance, points | 21 to 22 | |
25 |
Alloy Composition
Carbon (C), % | 0 to 0.030 | |
0.6 to 0.7 |
Chromium (Cr), % | 19.5 to 21.5 | |
0 |
Copper (Cu), % | 0 to 1.0 | |
0 |
Iron (Fe), % | 66.1 to 74.9 | |
98.4 to 98.9 |
Manganese (Mn), % | 4.0 to 6.0 | |
0.5 to 0.8 |
Molybdenum (Mo), % | 0.1 to 0.6 | |
0 |
Nickel (Ni), % | 1.5 to 3.5 | |
0 |
Nitrogen (N), % | 0.050 to 0.2 | |
0 |
Phosphorus (P), % | 0 to 0.035 | |
0 to 0.040 |
Silicon (Si), % | 0 to 1.0 | |
0 |
Sulfur (S), % | 0 to 0.030 | |
0 to 0.050 |