MakeItFrom.com
Menu (ESC)

EN 1.4482 Stainless Steel vs. C48600 Brass

EN 1.4482 stainless steel belongs to the iron alloys classification, while C48600 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4482 stainless steel and the bottom bar is C48600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 34
20 to 25
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 78
39
Shear Strength, MPa 510 to 530
180 to 230
Tensile Strength: Ultimate (UTS), MPa 770 to 800
280 to 360
Tensile Strength: Yield (Proof), MPa 530 to 570
110 to 170

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 980
120
Melting Completion (Liquidus), °C 1420
900
Melting Onset (Solidus), °C 1370
890
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 15
110
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
25
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
28

Otherwise Unclassified Properties

Base Metal Price, % relative 12
24
Density, g/cm3 7.7
8.1
Embodied Carbon, kg CO2/kg material 2.7
2.8
Embodied Energy, MJ/kg 38
47
Embodied Water, L/kg 150
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230 to 250
55 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 690 to 820
61 to 140
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 28 to 29
9.5 to 12
Strength to Weight: Bending, points 24 to 25
12 to 14
Thermal Diffusivity, mm2/s 4.0
36
Thermal Shock Resistance, points 21 to 22
9.3 to 12

Alloy Composition

Arsenic (As), % 0
0.020 to 0.25
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19.5 to 21.5
0
Copper (Cu), % 0 to 1.0
59 to 62
Iron (Fe), % 66.1 to 74.9
0
Lead (Pb), % 0
1.0 to 2.5
Manganese (Mn), % 4.0 to 6.0
0
Molybdenum (Mo), % 0.1 to 0.6
0
Nickel (Ni), % 1.5 to 3.5
0
Nitrogen (N), % 0.050 to 0.2
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.3 to 1.5
Zinc (Zn), % 0
33.4 to 39.7
Residuals, % 0
0 to 0.4