MakeItFrom.com
Menu (ESC)

EN 1.4482 Stainless Steel vs. C68400 Brass

EN 1.4482 stainless steel belongs to the iron alloys classification, while C68400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4482 stainless steel and the bottom bar is C68400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
18
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 78
41
Shear Strength, MPa 510 to 530
330
Tensile Strength: Ultimate (UTS), MPa 770 to 800
540
Tensile Strength: Yield (Proof), MPa 530 to 570
310

Thermal Properties

Latent Heat of Fusion, J/g 290
210
Maximum Temperature: Mechanical, °C 980
130
Melting Completion (Liquidus), °C 1420
840
Melting Onset (Solidus), °C 1370
820
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 15
66
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
87
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
99

Otherwise Unclassified Properties

Base Metal Price, % relative 12
23
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 38
47
Embodied Water, L/kg 150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230 to 250
81
Resilience: Unit (Modulus of Resilience), kJ/m3 690 to 820
460
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 28 to 29
19
Strength to Weight: Bending, points 24 to 25
19
Thermal Diffusivity, mm2/s 4.0
21
Thermal Shock Resistance, points 21 to 22
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Boron (B), % 0
0.0010 to 0.030
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19.5 to 21.5
0
Copper (Cu), % 0 to 1.0
59 to 64
Iron (Fe), % 66.1 to 74.9
0 to 1.0
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 4.0 to 6.0
0.2 to 1.5
Molybdenum (Mo), % 0.1 to 0.6
0
Nickel (Ni), % 1.5 to 3.5
0 to 0.5
Nitrogen (N), % 0.050 to 0.2
0
Phosphorus (P), % 0 to 0.035
0.030 to 0.3
Silicon (Si), % 0 to 1.0
1.5 to 2.5
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.5
Zinc (Zn), % 0
28.6 to 39.3
Residuals, % 0
0 to 0.5