MakeItFrom.com
Menu (ESC)

EN 1.4482 Stainless Steel vs. C96400 Copper-nickel

EN 1.4482 stainless steel belongs to the iron alloys classification, while C96400 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4482 stainless steel and the bottom bar is C96400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Elongation at Break, % 34
25
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
51
Tensile Strength: Ultimate (UTS), MPa 770 to 800
490
Tensile Strength: Yield (Proof), MPa 530 to 570
260

Thermal Properties

Latent Heat of Fusion, J/g 290
240
Maximum Temperature: Mechanical, °C 980
260
Melting Completion (Liquidus), °C 1420
1240
Melting Onset (Solidus), °C 1370
1170
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 15
28
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
5.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
5.1

Otherwise Unclassified Properties

Base Metal Price, % relative 12
45
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.7
5.9
Embodied Energy, MJ/kg 38
87
Embodied Water, L/kg 150
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230 to 250
100
Resilience: Unit (Modulus of Resilience), kJ/m3 690 to 820
250
Stiffness to Weight: Axial, points 14
8.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 28 to 29
15
Strength to Weight: Bending, points 24 to 25
16
Thermal Diffusivity, mm2/s 4.0
7.8
Thermal Shock Resistance, points 21 to 22
17

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.15
Chromium (Cr), % 19.5 to 21.5
0
Copper (Cu), % 0 to 1.0
62.3 to 71.3
Iron (Fe), % 66.1 to 74.9
0.25 to 1.5
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 4.0 to 6.0
0 to 1.5
Molybdenum (Mo), % 0.1 to 0.6
0
Nickel (Ni), % 1.5 to 3.5
28 to 32
Niobium (Nb), % 0
0.5 to 1.5
Nitrogen (N), % 0.050 to 0.2
0
Phosphorus (P), % 0 to 0.035
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.020
Residuals, % 0
0 to 0.5