MakeItFrom.com
Menu (ESC)

EN 1.4509 Stainless Steel vs. EN 1.7706 Steel

Both EN 1.4509 stainless steel and EN 1.7706 steel are iron alloys. They have 82% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4509 stainless steel and the bottom bar is EN 1.7706 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
210
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 21
17
Fatigue Strength, MPa 170
330
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Tensile Strength: Ultimate (UTS), MPa 530
690
Tensile Strength: Yield (Proof), MPa 260
500

Thermal Properties

Latent Heat of Fusion, J/g 280
260
Maximum Temperature: Mechanical, °C 890
440
Melting Completion (Liquidus), °C 1440
1470
Melting Onset (Solidus), °C 1400
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
40
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 13
3.7
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.8
2.3
Embodied Energy, MJ/kg 41
32
Embodied Water, L/kg 120
57

Common Calculations

PREN (Pitting Resistance) 18
4.7
Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
110
Resilience: Unit (Modulus of Resilience), kJ/m3 180
670
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19
24
Strength to Weight: Bending, points 19
22
Thermal Diffusivity, mm2/s 6.8
11
Thermal Shock Resistance, points 19
20

Alloy Composition

Carbon (C), % 0 to 0.030
0.15 to 0.2
Chromium (Cr), % 17.5 to 18.5
1.2 to 1.5
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 77.8 to 82.1
94.7 to 97.1
Manganese (Mn), % 0 to 1.0
0.5 to 0.9
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.4
Niobium (Nb), % 0.3 to 1.0
0
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.6
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0.1 to 0.6
0
Vanadium (V), % 0
0.2 to 0.3