MakeItFrom.com
Menu (ESC)

EN 1.4509 Stainless Steel vs. C91300 Bell Metal

EN 1.4509 stainless steel belongs to the iron alloys classification, while C91300 bell metal belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.4509 stainless steel and the bottom bar is C91300 bell metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 21
0.5
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
38
Tensile Strength: Ultimate (UTS), MPa 530
240
Tensile Strength: Yield (Proof), MPa 260
210

Thermal Properties

Latent Heat of Fusion, J/g 280
180
Maximum Temperature: Mechanical, °C 890
150
Melting Completion (Liquidus), °C 1440
890
Melting Onset (Solidus), °C 1400
820
Specific Heat Capacity, J/kg-K 480
360
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
7.4

Otherwise Unclassified Properties

Base Metal Price, % relative 13
39
Density, g/cm3 7.7
8.6
Embodied Carbon, kg CO2/kg material 2.8
4.5
Embodied Energy, MJ/kg 41
74
Embodied Water, L/kg 120
460

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
1.1
Resilience: Unit (Modulus of Resilience), kJ/m3 180
210
Stiffness to Weight: Axial, points 14
6.6
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 19
7.8
Strength to Weight: Bending, points 19
10
Thermal Shock Resistance, points 19
9.3

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 17.5 to 18.5
0
Copper (Cu), % 0
79 to 82
Iron (Fe), % 77.8 to 82.1
0 to 0.25
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0.3 to 1.0
0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0
18 to 20
Titanium (Ti), % 0.1 to 0.6
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.6